4.6 Tristate Logics Gates



 [KEMBALI KE MENU SEBELUMNYA]



1. Tujuan

        1. Mengetahui dan memahami Tristate Logics Gates

        2. Mengetahui prinsip kerja Tristate Logics Gates

        3. Mengetahui bentuk rangkaian Tristate Logics Gates


2. Alat dan Bahan

    2.1 Alat

a. Voltmeter DC



b. Baterai



c. Power Supply DC




2.2 Bahan

    1. Resistor


Spesifikasi Resistor




    2. Transistor NPN




Konfigurasi Pin







Spesifikasi




    3. Gerbang NAND


Spesifikasi IC 7400:

1. Tegangan Suply: 7 V

2. Tegangan input: 5.5 V

3. Beroperasi pada suhu udara 0 sampai +70 derjat

4. Kisaran suhu penyimpanan: -65 derjat sampai 150 derjat celcius 


Konfigurasi pin:

1. Vcc : Kaki 14

2. GND : Kaki 7

3. Input : Kaki 1 dan 2, 4 dan 5, 13 dan 12, 10 dan 9

4. Output : Kaki 3, 6, 1



    4. Inverter (NOT)


Spesifikasi Inverter (NOT)




Konfigurasi pin




    5. Logicstate



Komponen Input

    1. Switch


Komponen Output

    1. LED



Spesifikasi LED




    2. Motor


Spesifikasi Motor



Konfigurasi pin

Pin 1 : Terminal 1

Pin 2 : Terminal 2



    3. Relay




Spesifikasi Relay



Konfigurasi pin





3. Dasar Teori

    1. Resistor

Resistor adalah komponen elektronika pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur arus listrik dalam suatu rangkaian elektronika. Satuan Resistor adalah Ohm (simbol: Ω) yang merupakan satuan SI untuk resistansi listrik. Resitor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan hukum Ohm (V = I.R ).




Cara menghitung nilai resistansi resistor dengan gelang warna:

a. Dengan kode warna resistor

1. Masukkan angka langsung dari kode warna gelang pertama.

2. Masukkan angka langsung dari kode warna gelang kedua.

3. Masukkan angka langsung dari kode warna gelang ketiga.

4. Masukkan jumlah nol dari kode warna gelang ke-4 atau pangkatkan angka tersebut dengan 10 (10^n), ini merupakan nilai toleransi dari resistor.



Resistor dengan 4 cincin kode warna

Maka cincin ke 1 dan ke 2 merupakan digit angka, dan cincin kode warna ke 3 merupakan faktor pengali kemudian cincin kode warnake 4 menunjukan nilai toleransi resistor.

Resistor dengan 5 cincin kode warna

Maka cincin ke 1, ke 2 dan ke 3 merupakan digit angka, dan cincin kode warna ke 4 merupakan faktor pengali kemudian cincin kode warna ke 5 menunjukan nilai toleransi resistor.

Resistor dengan 6 cincin kode warna

Resistor dengan 6 cicin warna pada prinsipnya sama dengan resistor dengan 5 cincin warna dalam menentukan nilai resistansinya. Cincin ke 6 menentukan coefisien temperatur yaitu temperatur maksimum yang diijinkan untuk resistor tersebut.

b. Dengan kode huruf resistor 



Kode Huruf Untuk Nilai Resistansi :

· R, berarti x1 (Ohm)

· K, berarti x1000 (KOhm)

· M, berarti x 1000000 (MOhm)

 Kode Huruf Untuk Nilai Toleransi :

· F, untuk toleransi 1%

· G, untuk toleransi 2%

· J, untuk toleransi 5%

· K, untuk toleransi 10%

· M, untuk toleransi 20%

Rumus Resistor:

- Rumus dari Rangkaian Seri Resistor: Rtotal = R1 + R2 + R3 + ….. + Rn

- Rumus dari Rangkaian paralel Resistor: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn

- Rumus resistor dengan hukum ohm: R = V/I


    2. Transistor NPN

Transistor merupakan alat semikonduktor yang dapat digunakan sebagai penguat sinyal, pemutus atau penyambung sinyal, stabilisasi tegangan, dan fungsi lainnya. Transistor memiliki 3 kaki elektroda, yaitu basis, kolektor, dan emitor. Pada rangkaian kali ini digunakan transistor 2N2222A bertipe NPN. Transistor ini diperumpamakan sebagai saklar, yaitu ketika kaki basis diberi arus, maka arus pada kolektor akan mengalir ke emiter yang disebut dengan kondisi ON. Sedangkan ketika kaki basis tidak diberi arus, maka tidak ada arus mengalir dari kolektor ke emitor  yang disebut dengan kondisi OFF. Namun, jika arus yang diberikan pada kaki basis  melebihi arus pada kaki kolektor atau arus pada kaki kolektor adalah nol (karena tegangan kaki kolektor sekitar 0,2 - 0,3 V), maka transistor akan mengalami cutoff  (saklar tertutup).


Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.

1. Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.

2. Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.

3. Basis (B) berguna untuk mengatur arah gerak muatan negatif yang keluar dari transistor melalui kolektor.

Grafik Transitor 




Karakteristik dari masing-masing daerah operasi transistor tersebut dapat diringkas sebagai berikut:

Daerah Potong (cutoff)

Dioda Emiter diberi prategangan mundur. Akibatnya, tidak terjadi pergerakan elektron, sehingga arus Basis, IB = 0. Demikian juga, arus Kolektor, IC = 0, atau disebut ICEO (Arus Kolektor ke Emiter dengan harga arus Basis adalah 0).

Daerah Saturasi

Dioda Emiter diberi prategangan maju. Dioda  Kolektor juga diberi prategangan maju. Akibatnya, arus Kolektor, IC, akan mencapai harga maksimum, tanpa bergantung kepada arus Basis, IB, dan βdc. Hal ini, menyebabkan Transistor menjadi komponen yang tidak dapat dikendalikan. Untuk menghindari daerah ini, Dioda Kolektor harus diberi prateganan mundur, dengan tegangan melebihi VCE(sat), yaitu tegangan yang menyebabkan Dioda Kolektor saturasi.

Daerah Aktif

Dioda Emiter diberi prategangan maju. Dioda Kolektor diberi prategangan mundur. Terjadi sifat-sifat yang diinginkan, dimana:

atau




    3. Gerbang NAND

Gerbang NAND adalah gabungan gerbang NOT dan AND mempunyai dua atau lebih sinyal masukan (input) tetapi hanya satu sinyal keluaran (output). IC 7400 merupakan ic yang dibangun dari gerbang logika dasar NAND. Gerbang NAND menghendaki semua inputnya bernilai 0 (terhubung dengan ground) atau salah satunya bernilai 1 agar menghasilkan output yang berharga 1.

Gerbang NAND atau disebut juga "NAND GATE" adalah jenis gerbang logika kombinasi yang memiliki dua input (Masukan) dan satu output (keluaran). Pada dasarnya gerbang NAND merupakan pengembangan atau kombinasi dari gerbang AND dan gerbang NOT "NAND = NOT AND". Untuk lebih jelasnya perhatikan simbol dan gerbang kebenaran gerbang NAND berikut.




Pada gerbang logika NAND, simbol yang menandakan operasi gerbang logika NAND adalah tanda bar (-) diatas variabel, perhatikan gambar diatas.

Perhatikan tabel kebenaran gerbang NAND. Cara cepat untuk mengingat tabelnya adalah dengan mengingat pernyataan berikut. "Gerbang NAND akan menghasilkan output logika 0 bila semua inputnya memiliki logika 1" sedangkan " Gerbang NAND akan menghasilkan keluaran logika 1 bila salah satu input atau semua input memiliki logika 0".

Secara singkat, cukup mengingat gerbang logika AND, karena output dari gerbang logika NAND merupakan kebalikan dari output gerbang AND.

Transistor Gerbang NAND

Secara sederhana, gerbang logika NAND 2 input dapat dibangun menggunakan RTL Resistor-transistor Switch yang terhubung bersama degan input yang terhubung langsung ke basis transistor, dimana transistor harus dalam keadaan cut-off "MATI" untuk keluaran Q.

Gerbang logika NAND dapat menghasilkan fungsi logis yang diinginkan dengan simbol berupa gerbang AND standar dengan tambahan lingkaran (biasa juga disebut sebagai "Gelembung Inversi" pada bagian output yang mana mewakili gerbang NOT) yang disebut sebagai operasi logika NAND.

Jenis Gerbang Logika NAND

1. Gerbang logika NAND 2 Input


2. Gerbang logika NAND 3 Input


3. Gerbang logika NAND 4 Input



Berdasarkan gambar diatas ekspresi Boolean untuk gerbang NAND 4 input yaitu :  

Q = A.B.C.D


    4. Inverter (NOT)

Inverter atau pembalik(NOT) adalah suatu gerbang yang bertujuan untuk menghasilkan logika output kebalikan dari logika input Gerbang NOT merupakan gerbang di mana keluarannya akan selalu berlawanan dengan masukannya. Bila pada masukan diberikan tegangan ,maka transistor akan jenuh dan keluaran akan bertegangan nol. Sedangkan bila pada masukannya diberi tegangan tertentu, maka transistor akan cut off, sehingga keluaran akan bertegangan tidak nol. 

 Adapun simbol dan tabel kebenaran gerbang Inverter seperti berikut:



    5. Logicstate

Status logika Pengertian logis, benar atau salah, dari sinyal biner yang diberikan. Sinyal biner adalah sinyal digital yang hanya memiliki dua nilai yang valid. Dalam istilah fisik, pengertian logis dari sinyal biner ditentukan oleh level tegangan atau nilai arus sinyal, dan ini pada gilirannya ditentukan oleh teknologi perangkat. Dalam sirkuit TTL, misalnya, keadaan sebenarnya diwakili oleh logika 1, kira-kira sama dengan +5 volt pada garis sinyal; logika 0 kira-kira 0 volt. Tingkat tegangan antara 0 dan +5 volt dianggap tidak ditentukan.


Gerbang Logika (Logic Gates) adalah sebuah entitas untuk melakukan pengolahan  input-input yang berupa bilangan biner (hanya terdapat 2 kode bilangan biner yaitu, angka 1 dan 0) dengan menggunakan Teori Matematika Boolean sehingga dihasilkan sebuah sinyal output yang dapat digunakan untuk proses berikutnya.


    6. Switch

Saklar atau lebih tepatnya adalah Saklar listrik adalah suatu komponen atau perangkat yang digunakan untuk memutuskan atau menghubungkan aliran listrik. Saklar yang dalam bahasa Inggris disebut dengan Switch ini merupakan salah satu komponen atau alat listrik yang paling sering digunakan. Hampir semua peralatan Elektronika dan Listrik memerlukan Saklar untuk menghidupkan atau mematikan alat listrik yang digunakan.

Pada dasarnya, sebuah Saklar sederhana terdiri dari dua bilah konduktor (biasanya adalah logam) yang terhubung ke rangkaian eksternal, Saat kedua bilah konduktor tersebut terhubung maka akan terjadi hubungan arus listrik dalam rangkaian. Sebaliknya, saat kedua konduktor tersebut dipisahkan maka hubungan arus listrik akan ikut terputus.

Saklar yang paling sering ditemukan adalah Saklar yang dioperasikan oleh tangan manusia dengan satu atau lebih pasang kontak listrik. Setiap pasangan kontak umumnya terdiri dari 2 keadaan atau disebut dengan “State”. Kedua keadaan tersebut diantaranya adalah Keadaan “Close” atau “Tutup” dan Keadaan “Open” atau “Buka”. Close artinya terjadi sambungan aliran listrik sedangkan Open adalah terjadinya pemutusan aliran listrik.

Cara Kerja Saklar/Switch Listrik:

Berdasarkan dua keadaan tersebut, Saklar pada umumnya menggunakan istilah Normally Open (NO) untuk Saklar yang berada pada keadaan Terbuka (Open) pada kondisi awal. Ketika ditekan, Saklar yang Normally Open (NO) tersebut akan berubah menjadi keadaan Tertutup (Close) atau “ON”. Sedangkan Normally Close  (NC) adalah saklar yang berada pada keadaan Tertutup (Close) pada kondisi awal dan akan beralih ke keadaan Terbuka (Open) ketika ditekan

Berikut ini adalah Simbol Saklar/Swicth berdasarkan jumlah Pole dan Throw-nya.




    7. LED

LED merupakan keluarga dari Dioda yang terbuat dari Semikonduktor. Cara kerjanya pun hampir sama dengan Dioda yang memiliki dua kutub yaitu kutub Positif (P) dan Kutub Negatif (N). LED hanya akan memancarkan cahaya apabila dialiri tegangan maju (bias forward) dari Anoda menuju ke Katoda.


Ketika LED dialiri tegangan maju atau bias forward yaitu dari Anoda (P) menuju ke Katoda (K), Kelebihan Elektron pada N-Type material akan berpindah ke wilayah yang kelebihan Hole (lubang) yaitu wilayah yang bermuatan positif (P-Type material). Saat Elektron berjumpa dengan Hole akan melepaskan photon dan memancarkan cahaya monokromatik (satu warna).

Tegangan Maju LED





    8. Motor

Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Motor DC ini juga dapat disebut sebagai Motor Arus Searah. Seperti namanya, DC Motor memiliki dua terminal dan memerlukan tegangan arus searah atau DC (Direct Current) untuk dapat menggerakannya. Motor Listrik DC ini biasanya digunakan pada perangkat-perangkat Elektronik dan listrik yang menggunakan sumber listrik DC seperti Vibrator Ponsel, Kipas DC dan Bor Listrik DC.


Prinsip Kerja Motor DC

Terdapat dua bagian utama pada sebuah Motor Listrik DC, yaitu Stator dan Rotor. Stator adalah bagian motor yang tidak berputar, bagian yang statis ini terdiri dari rangka dan kumparan medan. Sedangkan Rotor adalah bagian yang berputar, bagian Rotor ini terdiri dari kumparan Jangkar. Dua bagian utama ini dapat dibagi lagi menjadi beberapa komponen penting yaitu diantaranya adalah Yoke (kerangka magnet), Poles (kutub motor), Field winding (kumparan medan magnet), Armature Winding (Kumparan Jangkar), Commutator (Komutator) dan Brushes (kuas/sikat arang).

Pada prinsipnya motor listrik DC menggunakan fenomena elektromagnet untuk bergerak, ketika arus listrik diberikan ke kumparan, permukaan kumparan yang bersifat utara akan bergerak menghadap ke magnet yang berkutub selatan dan kumparan yang bersifat selatan akan bergerak menghadap ke utara magnet. Saat ini, karena kutub utara kumparan bertemu dengan kutub selatan magnet ataupun kutub selatan kumparan bertemu dengan kutub utara magnet maka akan terjadi saling tarik menarik yang menyebabkan pergerakan kumparan berhenti.

Untuk menggerakannya lagi, tepat pada saat kutub kumparan berhadapan dengan kutub magnet, arah arus pada kumparan dibalik. Dengan demikian, kutub utara kumparan akan berubah menjadi kutub selatan dan kutub selatannya akan berubah menjadi kutub utara. Pada saat perubahan kutub tersebut terjadi, kutub selatan kumparan akan berhadap dengan kutub selatan magnet dan kutub utara kumparan akan berhadapan dengan kutub utara magnet. Karena kutubnya sama, maka akan terjadi tolak menolak sehingga kumparan bergerak memutar hingga utara kumparan berhadapan dengan selatan magnet dan selatan kumparan berhadapan dengan utara magnet. Pada saat ini, arus yang mengalir ke kumparan dibalik lagi dan kumparan akan berputar lagi karena adanya perubahan kutub. Siklus ini akan berulang-ulang hingga arus listrik pada kumparan diputuskan.


    9. Relay

Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi.


Terdapat besi atau yang disebut dengan nama iron core dililit oleh sebuah kumparan yang berfungsi sebagai pengendali. Sehingga ketika kumparan coil diberikan arus listrik maka akan menghasilkan gaya elektromagnet. Gaya tersebut selanjutnya akan menarik armature untuk pindah posisi dari normally close ke normally open. Dengan demikian saklar menjadi pada posisi baru normally open yang dapat menghantarkan arus listrik. Ketika armature sudah tidak dialiri arus listrik lagi maka ia akan kembali pada posisi awal, yaitu normally close.

Fitur:
1. Tegangan pemicu (tegangan kumparan) 5V
2. Arus pemicu 70mA
3. Maksimum beban AC 10A @ 250/125V
4. Maksimum baban DC 10A @ 30/28V
5. Switching maksimum 300 operasi/menit



    10. Tristate Logics Gates

Gerbang logika tristate memiliki tiga kemungkinan status keluaran, yaitu status logika '1', status logika '0' dan keadaan impedansi tinggi. Status impedansi tinggi dikontrol oleh input ENABLE eksternal. Itu Input ENABLE memutuskan apakah gerbang aktif atau dalam keadaan impedansi tinggi. Saat aktif, itu bisa menjadi '0' atau '1' tergantung pada kondisi masukan. Salah satu keuntungan utama dari gerbang ini adalah mereka input dan output dapat dihubungkan secara paralel ke jalur bus umum.

Gambar 4.27 (a) menunjukkan sirkuit simbol gerbang NAND tristate dengan input HIGH ENABLE aktif, bersama dengan tabel kebenarannya. 

Yang satu ditunjukkan pada Gambar 4.27 (b) memiliki input LOW ENABLE aktif. Ketika perangkat tristate disejajarkan, hanya satu di antaranya diaktifkan pada satu waktu. 

Gambar 4.28 menunjukkan kesejajaran inverter tristate yang memiliki TINGGI aktif AKTIFKAN masukan.



4. Percobaan

    4.1 Prosedur Percobaan

1. Buka aplikasi Proteus 

2. Siapkan alat dan bahan yang diperlukan untuk membuat rangkaian

3. Disarankan agar membaca datasheet tiap komponen terlebih dahulu

4. Pasang Logicstate, Switch, Push Button, Gerbang logika NAND, Gerbang logika NOT, resistor, transistor NPN, relay, led, motor, ground, voltmeter DC, dan power supply seperti beberapa rangkaian dibawah

5. Atur logicstate, switch, button, dan nilai resistor

6. Coba dijalankan rangkaian apabila ouput hidup (led dan motor), maka rangkaian bisa digunakan.



a. Rangkaian 

Gambar 4.27 (a)


Gambar 4.27 (b)




Gambar 4.28


b. Prinsip Kerja 

Rangkaian 1:

Ketika ketiga logicstate berlogika 0 (low), maka akan masuk ke input gerbang logika NAND logika 0 sesuai dengan tabel kebenaran AND bahwa 0 dan 0 akan menghasilkan 0. Karena input 0 maka pada gerbang NAND terjadi pembalikan logika sehingga output gerbang NAND menjadi  1 (HIGH)  yang mana sesuai dengan tabel kebenaran gerbang NAND.   Setelah berlogika 1 maka terukur tegangan keluaran dari gerbang NAND sebesar 4.96V lalu diteruskan pada kaki basis transistor yang bertegangan sebesar 0.71V dan sudah mengaktifkan transistor. Arus juga mengalir dari vcc masuk ke relay, dikarenakan relay mendapat tegangan yang cukup maka relay bergeser ke kiri dan mengakibatkan output berupa motor dc dan led hidup. Sedangkan ketika ketiga logicstate berlogika 1 (high), maka masuk ke input gerbang logika NAND logika 1, sesuai dengan tabel kebenaran AND bahwa 1 dan 1 akan menghasilkan 1 lalu dioperasikan lagi dengan input ketiga yang juga sama-sama berlogika 1 maka akan menghasilkan 1.  Karena input 1 maka pada gerbang NAND terjadi pembalikan logika sehingga output gerbang NAND menjadi  0 (low)  yang mana sesuai dengan tabel kebenaran gerbang NAND. Begitu seterusnya ketika di uji dengan input  seperti pada tabel kebenaran, hasilnya juga akan sama dengan output pada tabel kebenaran.

 

Rangkaian 2:

Apabila switch 1 berlogika 1 (HIGH), switch 2 berlogika 1 (HIGH), dan switch 3 berlogika 0 (LOW), dikarenakan pada kaki input NAND yang ketiga terdapat inverter(NOT) maka akan terjadi pembalikan logika menjadi 1 (HIGH). Dikarenakan input pada NAND berlogika (1 1 1) maka keluaran atau output nya menjadi berlogika 0 (LOW) dan mengakibatkan tidak adanya tegangan pada kaki base transistor sehingga transistor mengalami reverse bias dan relay tidak bergeser kekiri yang berdampak pada output yang berupa motor dc dan led tidak menyala. Hal ini sesuai dengan tabel kebenaran.
Sedangkan selain kondisi diatas, output pada gerbang logika NAND akan berlogika 1 (HIGH)  sehingga tegangan keluarannya sebesar 4.96V dan tegangan VBE transistor sebesar 0.71V yang mana tegangan ini mencukupi untuk transistor on (forward bias). Arus mengalir dari power supply ke relay yang mana tegangan pada relay mencukupi untuk mengaktifkan relay sehingga relay bergeser kekiri dan menyebabkan output rangkaian berupa motor dc dan led menyala. Hal ini sesuai dengan tabel kebenaran.

 

Rangkaian 3:

Apabila button B berlogika 1 (HIGH) dan button A C D E F berlogika 0 (LOW), maka akan menghasilkan output gerbang NOT (inverter) U3:A  berlogika 1 lalu akan diteruskan ke kaki base dari transistor dan menghasilkan tegangan sebesar 0.82V yang mana tegangan sebesar ini telah mencukupi untuk transistor on (forward bias). Arus mengalir dari power supply ke relay yang mana tegangan pada relay mencukupi untuk mengaktifkan relay sehingga relay bergeser kekiri dan menyebabkan output rangkaian berupa led dan motor menyala. Sedangkan U3:B dan U3:C tidak terdapat keluaran logika.
Perlakuan yang sama jika dilakukan pada button D dan F seperti button B diatas, dan dengan kondisi yang sama yaitu dengan mengatur logika pada button A C E berlogika 0 (LOW),
maka akan menghasilkan keluaran yang sama dengan yang terjadi pada button B yang mana akan menghidupkan led dan motor.

Apabila salah satu atau semua button A C E berlogika 1 (HIGH) dan jika button B D F berlogika 0 (LOW), maka output pada gerbang NOT (inverter) ialah logika 0 (LOW) yang mana tidak adanya tegangan untuk transistor menjadi on dan mengakibatkan output rangkaian yang berupa led dan motor tidak menyala.



a. Video Rangkaian 1



b. Video Rangkaian 2  


c. Video Rangkaian 3 







1. Gambarkan rangkaian gerbang logika NAND 3 Input!

Jawab:




2. Apa yang dimaksud dengan gerbang logika NAND dan berikan simbol serta tabel kebenarannya!

Jawab:

Gerbang logika NAND atau disebut juga "NAND GATE" adalah jenis gerbang logika kombinasi yang memiliki dua input (Masukan) dan satu output (keluaran). Pada dasarnya gerbang NAND merupakan pengembangan atau kombinasi dari gerbang AND dan gerbang NOT "NAND = NOT AND".





1. Gambarkan gerbang NOT tiga keadaan dengan enable aktif tinggi beserta tabel kebenaran!

Jawab:




2. Pada gambar rangkaian gerbang logika di bawah, tentukan keadaan A,B,C, dan D apa saja yang menjadikan Y tinggi?

Jawab:

Penentuan jawaban atas pertanyaan di atas dapat dilakukan dengan membuat tabel kebenaran.

1. Dari gerbang NAND nomor 3 dapat dinyatakan: Y akan rendah jika E dan F tinggi.

2. Dari gerbang NAND nomor 1 dapat dinyatakan: E akan rendah jika A dan B tinggi.

3. Dari gerbang NAND nomor 2 dapat dinyatakan: F akan rendah jika C dan D tinggi.

Ketiga pernyataan di atas agak sulit untuk dikaitkan. Pernyataan nomor 1 tidak dapat diikuti oleh pernyataan nomor 2 dan 3. Pernyataan nomor 1 mensyaratkan E tinggi dan F tinggi; sedangkan pernyataan nomor 2 memberikan keadaan E rendah dan pernyataan nomor 3 memberikan keadaan F rendah. Bahkan dalam soal ditanyakan masukan apa yang menjadikan Y tinggi, padahal di pernyataan nomor 1 dinyatakan Y rendah.

Agar ketiga pernyataan di atas dapat dikaitkan, gerbang nomor tiga diubah ke gerbang alternatifnya, yaitu OR dengan kedua masukan aktif rendah seperti pada gambar dibawah. Sehingga didapat pernyataan:

1. Y akan tinggi jika E atau F rendah.

2. E akan rendah jika A dan B tinggi.

3. F akan rendah jika C dan D tinggi.

Sehingga didapat pernyataan Y akan tinggi jika:

1. A dan B tinggi atau

2. C dan D tinggi






1. Apa saja kemungkinan status keluaran dari gerbang logika tristate?

a. Status logika ‘0’, status logika ‘1’, dan keadaan impedansi rendah (low-Z)

b. Status logika ‘0’, status logika ‘1’, dan keadaan impedansi tinggi (high-Z)

c. Status logika ‘0’, status logika ‘1’, dan status logika ‘2’

d. Status logika ‘0’ dan status logika ‘10'

e. Semua jawaban salah

Jawaban: B. Status logika ‘0’, status logika ‘1’, dan keadaan impedansi tinggi (high-Z)



2. Apa nama simbol gerbang dari gambar di bawah ini?


a. Gerbang NOR Tristate dengan input LOW Enable aktif

b. Gerbang NAND Tristate dengan input HIGH Enable aktif

c. Gerbang NOT Tristate dengan input HIGH Enable aktif

d. Gerbang NAND Tristate dengan input HIGH Enable aktif

e. Gerbang NOR Tristate dengan input LOW Enable aktif

Jawaban: D. Gerbang NAND Tristate dengan input HIGH Enable aktif




File Rangkaian 1  klik disini

File Rangkaian 2  klik disini

File Rangkaian 3  klik disini

Video Simulasi 1 klik disini

Video Simulasi 2 klik disini

Video Simulasi 3 klik disini

Datasheet Resistor klik disini

Datasheet Transistor klik disini

Datasheet Gerbang NAND klik disini

Datasheet Gerbang Inverter (NOT) klik disini

Datasheet LED klik disini

Datasheet Relay klik disini






Tidak ada komentar:

Posting Komentar